Mandatory Skills:
1. GenAI Application Development Expertise
• Programming Languages: Python
• Development Tools: Lang Chain, Llama Index, Lang Flow, Flowise
• Techniques: RAG Techniques
• Databases: Vector Databases (Pinecone, Weaviate, Qdrant)
• Additional Technologies: Knowledge Graphs, FastAPI, Streamlit, Gradio
2. Domain Model Fine-Tuning Capabilities
• Languages & Libraries: Python, Data Engineering, OSS LLMs (Llama2, Mixtral, GPT-Neo, GPT-J)
• Tokenization & Frameworks: Tokenizers (SentencePiece, Hugging Face Tokenizers), Fine-tuning Frameworks (Hugging Face Transformers, PyTorch Lightning)
• Datasets: HuggingFace Datasets, TensorFlow Datasets
3. LLMOps Proficiency
• Infrastructure & CI/CD: , GitHub Actions
• Monitoring & Management: Ray, SeldonCore, MLFlow, MLServer, Triton, BentoML, Prometheus, GrafanaDevOps, Kubernetes, Docker, Git, Jenkins, GitLab
4. Data Engineering for AI Applications
• Data Processing & Management: Python, Apache Spark, Apache Kafka, AWS S3, Azure Data Lake Storage (ADLS), Delta Lake
• Workflow Automation: Apache Airflow, dbt, Apache NiFi, Fivetran, Airbyte, Great Expectations
• Data Catalogs: Amundsen, Collibra, Alation
5. AI-Ready Cybersecurity Knowledge
• Threat Modeling & Security: AI-Specific Threat Modeling Tools, Secure ML Pipeline Tools, API Security Tools
• Monitoring & Prevention: AI Security Monitoring Tools, Prompt Injection Prevention Libraries, Adversarial
Example Detection Libraries
6. GenAI Guardrails and Ethics
• Ethics & Fairness: AI Ethics Frameworks and Tools, Bias Detection and Mitigation Tools, Fairness Metrics Libraries
• Privacy & Security: Privacy-Preserving Machine Learning Libraries, Robustness and Security Tools
• Transparency & Governance: Model Interpretability Libraries, AI Governance Frameworks and Tools
Any Gradute